# An Assessment of South Carolina Higher Education Facilities Conditions & Measuring Deferred Maintenance

Tri-Association Facility Managers Conference Madren Center, Clemson University November 6, 2007

## Why Facilities Matter

- Provide atmosphere for learning
- Among state's most valuable assets and represent taxpayer investment
- Need to invest in facilities to remain competitive
- 2006 study reinforced the notion that facilities play an important role in recruitment and retention of students (*The Impact of Facilities on Recruitment and Retention of Students* by David Cain and Gary L. Reynolds)

### General Facts of Higher Ed Facilities

- 1 out of every 4 buildings that the State of South Carolina insures can be found on the campus of a public college or university
- 1,516 buildings with approximately 43.6 million gross square feet (GSF) (as of fall 2006)
- Approximately 3,800 acres maintained at over 80 locations (as of fall 2006)
- 343 residential facilities with approximately 29,000 beds (September 2006 survey)

## Background

- 1994 Study
  - Joint study between CHE & Budget & Control Board
  - Assessment format developed using APPA standards
  - Identified \$173 million backlog
- 2003 Study
  - Institutions completed building condition surveys in absence of independent statewide study
  - Updated study found backlog of deferred maintenance of \$603 million

## Scope of Current Study

- Update 2003 study
- Continual interest in "deferred maintenance" by executive and legislative branches and CHE
- Institutions used established evaluation format to conduct assessment
- Facilities included in study:
  - Classified as 25% or more E&G as of fall 2006 CHEMIS data report (allowances were made for new facilities not yet captured)
  - Only owned facilities (per CHEMIS report)
  - 918 buildings were included in the study

## Limitations of Study

- Individual institution assessment styles
- "Not-applicable systems"
  - Recognized after surveys were submitted
  - Rated with score of "1" (in general, did not materially affect overall condition)
  - Lack of system is an upgrade, not deferred maintenance which is not adequately accounted for
- Infrastructure not included
  - Deferred reporting for one year in order to determine appropriate method for measurement

### Methodology

- Assessment format included:
  - Form collected building vitals, replacement value
  - Systems Evaluations
    - Foundation, roof, windows, heating, cooling, electrical, etc.
    - Range of 1-5 (1: satisfactory, 5: replace)
  - Average system generated multiplier which was multiplied by system percentage of building (See example)

## **Evaluation Example**

#### 2007 BUILDING CONDITION SURVEY

Page 1

Institution Name: MUSC

Building Number: 232

Building Name: 25 Ehrhardt Street

Location:

Gross Square Feet: 2,403

Year Const / Renov: 1962

Replacement Cost: \$231,878

Comments:

Respondent: Steve Kincaid

Name

Telephone: 792-8785

E-Mail: kincaids@musc.edu

COMPLETED SURVEYS ARE DUE TO CHE NO LATER THAN MAY 4, 2007

#### Please do not enter data in the cells below this line. Begin data entry on Page 2.

|                  | System<br>Avg. Score | Multiplier |   | System % of Building | Current %<br>Value Bldg. |
|------------------|----------------------|------------|---|----------------------|--------------------------|
|                  |                      |            |   |                      |                          |
| Foundation       | 1.000                | 1.000      | Χ | 0.13 =               | 0.1300                   |
| Exterior Walls   | 2.125                | 0.763      | Χ | 0.13 =               | 0.0991                   |
| Floor            | 1.500                | 0.900      | Χ | 0.07 =               | 0.0630                   |
| Roof             | 1.000                | 1.000      | Х | 0.07 =               | 0.0700                   |
| Interior Walls   | 2.500                | 0.650      | Х | 0.03 =               | 0.0195                   |
| Windows          | 3.000                | 0.500      | Х | 0.02 =               | 0.0100                   |
| Doors            | 1.400                | 0.920      | Х | 0.01 =               | 0.0092                   |
| Ceiling          | 2.500                | 0.650      | Х | 0.03 =               | 0.0195                   |
| Heating          | 2.375                | 0.688      | Х | 0.10 =               | 0.0688                   |
| Cooling          | 3.375                | 0.388      | Х | 0.10 =               | 0.0388                   |
| Plumbing         | 3.111                | 0.467      | Х | 0.08 =               | 0.0373                   |
| Electrical       | 2.375                | 0.688      | Х | 0.08 =               | 0.0550                   |
| Elevators        | 1.000                | 1.000      | Х | 0.01 =               | 0.0100                   |
| Safety           | 1.333                | 0.933      | Х | 0.05 =               | 0.0467                   |
| Design Standards | 1.667                | 0.867      | Х | 0.09 =               | 0.0780                   |
| Agency Rating:   |                      |            |   | 1.00                 | 0.755                    |

| Replacement Cost:   | \$231,878 |
|---------------------|-----------|
| Building Condition: | 75        |
| Maintenance Need:   | \$57,970  |

| Bldg. Avg. | Condition    | Condition  |            |
|------------|--------------|------------|------------|
| Grade      | Code         | Multiplier | Difference |
| 1          | Satisfactory | 1.00       |            |
| 2          | Remodel A    | 0.8        | -0.2       |
| 3          | Remodel B    | 0.5        | -0.3       |
| 4          | Remodel C    | 0.2        | -0.3       |
| 5          | Replace      | 0.00       | -0.2       |

#### **Building Name:**

| <b>Foundation</b><br>1 - 2 - 3 - 4 - 5 | Rating |
|----------------------------------------|--------|
|                                        | J      |
| Cracked Walls                          | 1      |
| Foundation Settlement                  | 1      |
| Foundation Deterioration               | 1      |
| Design Load                            | 1      |
| Average                                | 1      |

| <b>Roof System</b><br>1 - 2 - 3 - 4 - 5 | Rating   |
|-----------------------------------------|----------|
|                                         |          |
| Physical Condition                      | 1        |
| Leaks                                   | 1        |
| Drainage                                | 1        |
| Insulation                              | 1        |
| Fire Rating                             | 1        |
| Design Load                             | 1        |
| Average                                 | 1        |
|                                         |          |
| Age of Roof Cover:                      | 9        |
| Type of Roof Cover:                     | shingles |
| Flat:                                   |          |
| Pitched:                                | X        |

#### 25 Ehrhardt Street

| Exterior Wall System |        |
|----------------------|--------|
| 1 - 2 - 3 - 4 - 5    | Rating |
|                      |        |
| Physical Condition   | 2      |
| Waterproofing        | 2      |
| Caulking             | 2      |
| Pointing             | 2      |
| Code Compliance      | 1      |
| Insulation           | 2      |
| Maintainability      | 3      |
| Painting             | 3      |
| Average              | 2.125  |

| Interior Wall System |        |
|----------------------|--------|
| 1 - 2 - 3 - 4 - 5    | Rating |
|                      |        |
| Physical Condition   | 2      |
| Strength & Stability | 2      |
| Acoustical Quality   | 2      |
| Appearance           | 3      |
| Adaptability         | 3      |
| Maintainability      | 3      |
| Average              | 2.5    |

#### **Building Number:**

| <b>Floor System</b> 1 - 2 - 3 - 4 - 5 | Rating |
|---------------------------------------|--------|
|                                       |        |
| Structural Condition                  | 1      |
| Maintainability                       | 2      |
| Floor Finish                          | 3      |
| Vibration                             | 1      |
| Fire Rating                           | 1      |
| Design Load                           | 1      |
| Average                               | 1.5    |

232

| <b>Window System</b><br>1 - 2 - 3 - 4 - 5 | Rating |
|-------------------------------------------|--------|
|                                           |        |
| Physical Condition                        | 3      |
| Appearance                                | 3      |
| Functional Ability                        | 3      |
| Infiltration                              | 3      |
| Maintainability                           | 3      |
| Average                                   | 3      |

| <b>Door System</b><br>1 - 2 - 3 - 4 - 5 | Rating |
|-----------------------------------------|--------|
|                                         |        |
| Door Leaf                               | 1      |
| Frame                                   | 2      |
| Hardware                                | 2      |
| Security                                | 1      |
| Fire Rating                             | 1      |
| Average                                 | 1.4    |

| Ceiling System<br>1 - 2 - 3 - 4 - 5 | Rating  |
|-------------------------------------|---------|
| 1-2-3-4-3                           | ivaning |
| Structural Condition                | 2       |
| Accoustical                         | 2       |
| Accessability                       | 3       |
| Appearance                          | 3       |
| Average                             | 2.5     |

| Cooling System         |        |
|------------------------|--------|
| 1 - 2 - 3 - 4 - 5      | Rating |
|                        |        |
| Cooling Capacity       | 4      |
| Reasonable Energy      |        |
| Consumption            | 3      |
| Temperature            | 3      |
| Noise Level            | 3      |
| Air Circulation & Vent | 3      |
| Reliability            | 3      |
| Filtration             | 4      |
| Humidity               | 4      |
| Average                | 3.375  |
|                        |        |
| Age of System:         | 16     |
| Cooling Capacity-Tons: | 5      |

| Plumbing System         |        |
|-------------------------|--------|
| 1 - 2 - 3 - 4 - 5       | Rating |
|                         |        |
| Water Pressure & Supply |        |
| Quantities              | 3      |
| Sanitation Hazards or   |        |
| Cross Functions         | 2      |
| Drain & Waste Function  | 3      |
| Fixture Quantities      | 4      |
| Fixture Types & Cond.   | 4      |
| Wheel Chair Fixtures    | 4      |
| Restroom Facilities     | 4      |
| Roof Drainage           | 1      |
| Site Drainage           | 3      |
| Average                 | 3.1111 |

| Heating System         |        |
|------------------------|--------|
| 1 - 2 - 3 - 4 - 5      | Rating |
|                        |        |
| Heating Capacity       | 2      |
| Temperature Control    | 2      |
| Noise Level            | 2      |
| Air Circulation & Vent | 3      |
| Reliability            | 2      |
| Reasonable Energy      |        |
| Consumption            | 2      |
| Filtration             | 3      |
| Humidity               | 3      |
| Average                | 2.375  |
|                        |        |
| Age of System:         | 16     |
| Heating Capacity-BTUs: | 50,000 |
|                        |        |
|                        |        |

| Electrical System<br>1 - 2 - 3 - 4 - 5 | Rating |
|----------------------------------------|--------|
|                                        |        |
| Safety Conditions                      | 3      |
| Service Capacity                       | 3      |
| Panel Capacity                         | 3      |
| Convenience Outlets                    | 3      |
| Light Levels                           | 3      |
| Fixtures                               | 2      |
| Emergency Power                        | 1      |
| Exit Lighting                          | 1      |
| Average                                | 2.375  |

| Elevator System   |        |
|-------------------|--------|
| 1 - 2 - 3 - 4 - 5 | Rating |
|                   |        |
| Size & Number     | 1      |
| Maintainability   | 1      |
| Code Compliance   | 1      |
| Average           | 1      |

| <b>Safety Standards</b><br>1 - 2 - 3 - 4 - 5 | Rating |
|----------------------------------------------|--------|
|                                              |        |
| Means of Egress                              | 1      |
| Fire Ratings                                 | 1      |
| Extinguishing Systems                        | 1      |
| Detection & Alarm Sys.                       | 2      |
| Lighting Systems                             | 2      |
| Handicap Access                              | 1      |
|                                              |        |

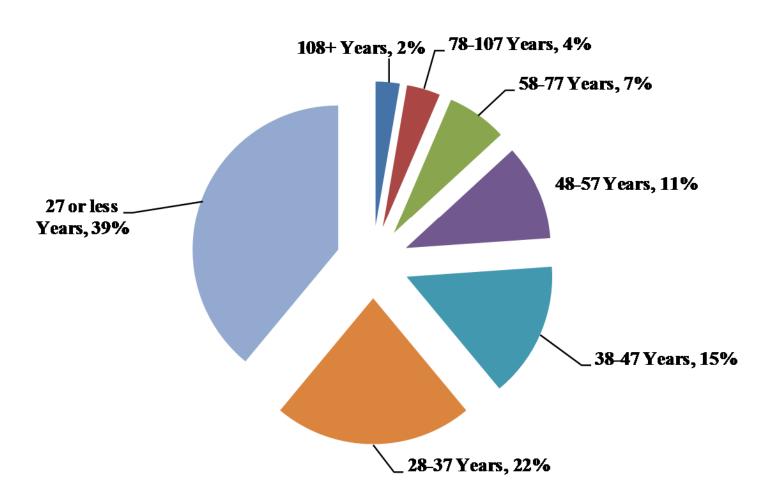
| <b>Design Standards</b><br>1 - 2 - 3 - 4 - 5 | Rating |
|----------------------------------------------|--------|
|                                              |        |
| Flexible Design                              | 3      |
| Suitable for Present Use                     | 1      |
| Gross to Assignable Area                     | 1      |
| Average                                      | 1.6667 |

## Methodology (continued)

- Calculation of routine needs and backlog:
  - Routine maintenance is 3% of replacement value (APPA standard)
  - Acceptable level of deferred maintenance is 10% (i.e. condition of 90 or higher) (APPA standard)
  - Deferred maintenance is difference of "acceptable level" and "actual condition"

#### Calculating Maintenance Needs

- Routine maintenance is three percent of replacement value
  - 2008-09 MRR will be updated to reflect this change
- Technical Colleges
  - Maintenance not funded through MRR (DTC & TCL exempted)
  - Colleges report county funds do not meet all needs
- \$136 million annual need
  - Includes all technical colleges


## Deferred Maintenance Backlog

- Defined as: "maintenance and repair deficiencies that are unfunded or unplanned and are deferred to a future budget cycle or postponed until funds are available" (Harvey Kaiser)
- \$797 million backlog identified
  - 32% increase since 2003 study
  - 360% increase since 1994 study
  - Not adjusted for inflation

## Problem: Aging Facilities

- 1 million GSF (or 2%) is 108 years or older
  - Challenge of restoration costs
- Rapidly-changing technology needs
- Average facility age by sector:
  - Research 59 years
  - Teaching 49 years
  - USC Branches 45 years
  - Technical 27 years

#### Age of Buildings by Gross Square Foot SC Public Colleges & Universities - Fall 2006



Source: CHEMIS fall 2006 building data summary report

## Problem: Inadequate Funding

- MRR has not been fully funded in several years
- Lump-sum allocations from General Assembly to institutions
- No bond bill since 2000
- No predictive capital funding source to address routine maintenance, renovation, replacement, and new construction

Stresses capital planning process!

#### Deferred Maintenance Plans

- August 2006 CHE adopted recommendations to improve the facilities approval process
  - Recommendation 5: "Require each higher education institution to develop and submit for CHE approval a funding plan to bring its deferred maintenance to an acceptable level."
  - Way to report progress made to reduce backlog
  - Provide concise document to interested stakeholders
- August 2007 Institutions submitted plans for first year
  - Facilities Advisory Committee developed parameters for calculating deferred maintenance and reporting elements for plans
  - Snapshot of needs and proposed approaches to address

## What Are Other States Doing?

#### Kansas

- Fall 2006 report identified \$727 million backlog
- 2007 legislative session Small victory with 5-year,
  \$90 million maintenance plan

#### Florida

- November 2006 facilities task force report identified
  \$3.4 billion need for new space
- Report also identified need for expanding revenue streams for construction, maintenance, and deferred maintenance

#### Other States (continued)

- Kentucky
  - April 2007 independent study found needs for:
    - \$5.3 billion for system renewal
    - \$860 million for adequacy or fit-for-use improvements
    - \$6.4 billion for new buildings
- North Carolina
  - General Assembly mandated 1997 study to examine capital equity and adequacy
  - Report identified \$6.9 billion need for renovation and modernization, current capacity, future capacity, and other needs
  - Resulted in NC voters approving \$3.1 billion bond bill in 2000

#### Recommendations

- 20-year plan to reduce backlog
  - \$40 million a year
  - Infrastructure yet to be included (anticipated summer/fall 2008)
- Full funding of the MRR
  - CHE will continue to advocate for full funding of the MRR to include annual maintenance needs
- Other solutions
  - CHE and institutions prepared to work with appropriate entities to find viable solutions
  - Higher Education Study Committee Facilities advisory group to develop recommendations for inclusion in a statewide strategic plan for higher ed

#### More Information

- CHE Website
  - <a href="http://www.che.sc.gov/DeferredMaintenance/DMHo">http://www.che.sc.gov/DeferredMaintenance/DMHo</a> me.htm
  - Includes report, campus building facts, institutional deferred maintenance plans, and links to other facilities-related information
- CHE Staff Contact
  - Alyson Goff, Program Manager for Facilities
    - **(803)** 737-9930
    - agoff@che.sc.gov